Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development.

نویسندگان

  • Hélène Adam
  • François Ouellet
  • Ndjido A Kane
  • Zahra Agharbaoui
  • Geneviève Major
  • Yoko Tominaga
  • Fathey Sarhan
چکیده

TaVRN1, a member of the APETALA1 (AP1) subfamily of MADS-box transcription factors, is a key gene that controls transition from vegetative to reproductive phase in wheat. The accumulation of TaVRN1 transcripts in winter wheat probably requires the down-regulation of TaVRT2, a MADS-box factor that binds and represses the TaVRN1 promoter, and of the flowering repressor TaVRN2. However, the molecular mechanisms by which TaVRN1 functions as an activator of phase transition is unknown. To address this, a combination of gene expression and functional studies was used. RNA in situ hybridization studies showed that TaVRN1 transcripts accumulate in all meristems and primordia associated with flower development. An interaction screen in yeast revealed that TaVRN1 interacts with several proteins involved in different processes of plant development such as transcription factors, kinases and a cyclophilin. Arabidopsis plants overexpressing TaVRN1 flower early and show various levels of modified plant architecture. The ectopic expression causes an overexpression of the AP1 and MAX4 genes, which are associated with flowering and auxin regulation, respectively. The induction of gene expression probably results from the binding of TaVRN1 to CArG motifs present on the AP1 and MAX4 promoters. In contrast, Arabidopsis plants that overexpress TaVRT2, which encodes a putative flowering repressor, show an opposite late flowering phenotype. Together, the data provide molecular evidence that TaVRN1 may have pleiotropic effects in various processes such as control of axillary bud growth, transition to flowering and development of floral organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.

In plants, flowering is triggered by endogenous and environmental signals. CONSTANS (CO) promotes flowering of Arabidopsis in response to day length. Four early target genes of CO were identified using a steroid-inducible version of the protein. Two of these genes, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT), are required for CO to promote flowering; the others are in...

متن کامل

Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS-box protein that plays an essential role in integrating multiple flowering signals to regulate the transition from vegetative to reproductive development in the model plant Arabidopsis. Although SOC1-like genes have been isolated in various angiosperms, its orthologs in Orchidaceae, one of the largest families of flowering plants, ...

متن کامل

O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat

Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism...

متن کامل

An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha...

متن کامل

Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways

Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabido...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 8  شماره 

صفحات  -

تاریخ انتشار 2007